"ReCl₃·B," where B = 2,5-DTH, 2,2'-bipyridyl, or 1,10-phenanthroline, as described by Colton, *et al.*¹¹ Not only were we unable to repeat the preparative details (see Experimental Section), but the products isolated were not of this stoichiometry. Thus, although prolonged reaction of rhenium(III) chloride

with 2,5-DTH sometimes yields a product of composition approaching $Re_3Cl_9(DTH)_3$, usually less than three molecules of ligand were coordinated. Also the assertion¹¹ that "ReCl₃·B" are five-coordinate is clearly incorrect. Their visible spectra are consistent in all cases with a trimeric species.

Contribution from the U. S. Geological Survey, Washington, D. C., and the Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland

The Crystal Structures of Potassium and Cesium Trivanadates¹

BY HOWARD T. EVANS, JR., 28 AND STANLEY BLOCK 26

Received May 20, 1966

Potassium and cesium trivanadates are monoclinic and isomorphous, space group $P2_1/m$, with the following dimensions (Z = 2): KV_3O_8 , a = 7.640 A, b = 8.380 A, c = 4.979 A, $\beta = 96^{\circ} 57'$; CsV_2O_8 , a = 8.176 A, b = 8.519 A, c = 4.988 A, $\beta = 95^{\circ} 32'$. The crystal structure of KV_3O_8 has been determined from hk0, 0kl, and h0l Weissenberg data with an R factor of 0.15. The structure of CsV_3O_8 has been refined with 1273 hkl Weissenberg data to an R factor of 0.089. The structures consist of corrugated sheets based on a linkage of distorted VO_6 octahedra. Two of the vanadium atoms lie in double, square-pyramid groups V_2O_8 , which are linked through opposite basal corners into chains along the b axis. The chains are joined laterally along the c axis into sheets by the third vanadium atom in VO groups, also forming part of a square-pyramid coordination. Various aspects of these structures are compared with other known oxovanadate structures.

Introduction

A study of the crystal chemistry of vanadium in relation to the geochemistry of vanadium and uranium in the Colorado Plateau region has been carried on at the Geological Survey over the past decade. Several synthetic compounds have been analyzed by X-ray diffraction methods in order to learn more about the unusual coordination behavior of vanadium, especially in the higher valence states. Vanadium is deposited in the Colorado Plateau sandstones as lower valence oxides (for example, montroseite, VO(OH)), but under the influence of weathering conditions it is rapidly oxidized to the pentavalent state.3 In this state readily soluble vanadates are formed, and many corresponding minerals have been found. Examples are the calcium metavanadate hydrate rossite, $Ca(VO_3)_2$. $4H_2O$, the hexavanadate hewettite, $CaV_6O_{16}\cdot 9H_2O$, and the decavanadate pascoite, Ca₃V₁₀O₂₈·17H₂O. Alkali vanadate solutions also readily crystallize such compounds, but the natural products almost always contain an alkaline earth cation. Moderately acid potassium vanadate solutions produce crystals of decavanadates and hexavanadates but these are often accompanied, especially from warm solutions, by a light orange, crystalline phase of low solubility, potassium trivanadate KV₃O₈.⁴ This seems to be a very

(2) (a) U. S. Geological Survey. (b) Johns Hopkins University; present

address National Bureau of Standards, Washington, D. C. (3) H. T. Evans, Jr., and R. M. Garrels, *Geochim. Cosmochim. Acta*, 15, 131 (1958). stable phase but has not yet been found in nature. As part of the general crystal chemical study the structure of KV_3O_8 was analyzed some time ago by

Block.^{5,6} Subsequently, considerably better data were obtained for the isomorphous compound cesium trivanadate CsV_3O_8 , so that a more accurate description of the structure can now be presented. The present paper describes the study of both of these compounds.

Trivanadates and Vanadate Solutions

The complex behavior of vanadate solutions with respect to changes in pH has long been the subject of study by inorganic chemists, frequently with contradictory and inconclusive results. Jander and Jahr,⁷ by means of diffusion-rate studies, were the first to delineate clearly the progressive condensation of vanadate anions into higher and higher molecular weight polyanions as the pH is lowered. More recently, careful studies by emf methods have been reported for sodium vanadate solutions over the pH range 7–10 by Brito and Ingri⁸ and by Ingri and Brito,⁹ and in the pH range 1–6.5 by Rossotti and Rossotti.¹⁰ These authors have given reviews of previous work on these systems and no attempt will be made to give a comprehensive summary here.

According to Rossotti and Rossotti,¹⁰ the main

(5) S. Block, "Program and Abstracts of Pittsburgh Diffraction Conference and the American Crystallographic Association, Nov 3-5, 1954," p 15; Ph.D. Thesis, The Johns Hopkins University, Baltimore, Md., 1955.

(7) G. Jander and K. F. Jahr, Z. Anorg. Allgem. Chem., 212, 1 (1933).
(8) F. Brito and N. Ingri, Anales Real Soc. Espan. Fis. Quim. (Madrid), B56, 165 (1960).

(9) N. Ingri and F. Brito, Acta Chem. Scand., 13, 1971 (1959).

⁽¹⁾ Publication authorized by the Director, U. S. Geological Survey.

⁽⁴⁾ For compounds with the O:V ratio <3, the names trivanadate, pentavanadate, hexavanadate, etc., are assigned arbitrarily according to the simplest formulation, except where a definite polyion is involved, such as decavanadate.

⁽⁶⁾ S. Block, Nature, **186**, 540 (1960). In Table 1 of this paper, x for O_4 is incorrectly given as 0.518 and should be 0.158.

⁽¹⁰⁾ F. J. C. Rossotti and H. Rossotti, ibid., 10, 957 (1956).

vanadium components of sodium solutions in the pH range 2–6.5 are the decavanadates $V_{10}O_{28}^{6-}$, $HV_{10}O_{28}^{6-}$, and $H_2V_{10}O_{28}^{4-}$. These are bright orange in color and readily form well-crystallized, very soluble salts with various cations. The structure of the polyanion V_{10} - O_{28}^{6-} has only recently been determined through crystal structure analyses of $K_2Zn_2V_{10}O_{28}$ ·16H₂O and $Ca_3V_{10}O_{28}$ ·17H₂O.¹¹ Nevertheless, the equilibrium studies do not take into account certain less soluble solid phases which appear from the orange solutions containing cations other than sodium, especially when they are warmed. Potassium metavanadate KVO₃ can be dissolved in water and converted to the decavanadate by adding an appropriate amount of acid

$$10KVO_3 + 4H^+ \longrightarrow V_{10}O_{23}^{6-} + 10K^+ + 2H_2O$$

When less than this amount of acid is added and the solution is warmed to about 40°, dark red crystals of tripotassium pentavanadate K₃V₅O₁₄ occasionally appear. This material has no structural relationship to the decavanadate complex but has an unusual sheet structure.¹² When 0.4 equiv of acid has been added, the pentavanadate no longer appears, but light orange potassium trivanadate KV₃O₈ is precipitated at temperatures above 50-60°. This compound appears together with colorless KVO₃ at pH values near to neutrality (~ 6) and also together with the pentavanadate when it is formed so that it is difficult to obtain the latter pure. The trivanadate is readily obtained pure at pH values below 5, where it appears to replace the more soluble decayanadate salts that may have crystallized previously. Even at room temperature, an orange decavanadate solution on standing for several weeks becomes nearly colorless, depositing small, platy, light orange crystals of the trivanadate. The compound is evidently formed by reaction of decavanadate with acid

$$10K^+ + 3V_{10}O_{23}^{6-} + 8H^+ \implies 10KV_3O_8 + 4H_2O$$

The reaction is very slow at room temperature but above 60° swings rapidly to the right. Thus, it has been suggested by Evans¹³ that decavanadate solutions at room temperature are actually metastable in the presence of potassium and that the solid KV₃O₈ is the most stable phase in this system.

Potassium trivanadate KV_3O_8 was first prepared and described by Norblad¹⁴ as forming a crust of brilliant orange crystals nearly insoluble in water. He also described $NH_4V_3O_8$ as forming golden yellow plates. These compounds have been rarely referred to in the literature since then until Kelmers^{15,16} reported a detailed study of them in 1961. Kelmers found¹⁶ that $NH_4V_3O_8$, KV_3O_8 , RbV_8O_8 , and CsV_8O_8 are all probably isostructural with the monoclinic KV_3O_8 as described by Block^{5,6} and are all formed in a similar man-

(15) A. D. Kelmers, J. Inorg. Nucl. Chem., 17, 168 (1961).

(16) A. D. Kelmers, *ibid.*, **21**, 45 (1961).

ner and have similar properties. Kelmers further found¹⁵ that $NH_4V_3O_8$ is the stable phase with respect to the many other soluble, orange ammonium vanadates formed from the acidified solutions, analogous to Evans' observations¹³ concerning KV_3O_8 . Kelmers¹⁶ was unable to synthesize analogous compounds of lithium and sodium from water solutions. Also, although Kelmers¹⁷ found $K_3V_5O_{14}$ in the anhydrous system $K_2O-V_2O_5$, neither he nor Holtzberg, *et al.*,¹⁸ nor Illavionov, *et al.*,¹⁹ found KV_3O_8 at the temperatures studied (~500-900°).

The isostructural phases γ -NaV₃O₈ and γ -Li_{1+x}V₃O₈ (x = 0-0.5) were prepared by Flood, *et al.*,²⁰ by slowly cooling melts of Li₂CO₃ and V₂O₅. Their structure as determined by Wadsley²¹ is entirely different from that found for KV₃O₈ and CsV₃O₈ as described in this paper.

Experimental Section

Preparation and Characterization.—Crystals of KV_3O_8 and CsV_3O_8 were prepared by acidification of the corresponding metavanadate solutions at temperatures of about 60–80°, as described by Kclmers.¹⁶ Optical data were determined with the polarizing microscope, and crystal morphology was studied on the two-circle goniometer. Densities were estimated by flotation and by means of the Berman balance. No piezoelectric response was found in either case on the Giebe–Scheibe apparatus. Debye–Scherrer X-ray diffraction patterns were in agreement with data reported by Kelmers.¹⁶ Hägg–Guinier focused patterns were prepared at the Department of Chemistry of the Royal Institute of Technology in Stockholm, and these patterns provided 2 θ data that were used to refine the unit cell parameters by a least-squares procedure (Table I).

TABLE I Crystallographic Data for the Alkali Trivanadates²

Space group	$KV_{3}O_{3}^{\circ}$ $P2_1/m$	CsV_2Os'' $P2_1/m$	NH4V3O8°	RbV₃O8°
a, A b. A	7.640 ± 2 8.380 ± 3	8.176 ± 5 8.519 ± 4	7.881 ± 4 8.423 ± 6	7.859 ± 5 8.439 ± 7
c, A	4.979 ± 2	4.988 ± 2	5.005 ± 5	4.972 ± 6
β V, A ³	$96^{\circ} 57 \pm 27$ 316.5 ± 1	$95^{\circ} 32 \pm 3^{\circ} 345.8 \pm 2$	$96^{\circ} 28 \pm 3^{\circ}$ 330.1 ± 3	$96^{\circ} 5 \pm 3^{\prime}$ 327.9 ± 4
d(measd), g/cm³ d(obsd), g/cm³	3.33 ± 3 3.356	3.91 ± 7 3.973		

^a Estimated standard errors derived from least-squares analysis of indexed X-ray powder diffraction data are given in terms of the last significant figure. ^b Based on powder data measured from Hägg–Guinier patterns with KCl used as internal standard; Cu K α radiation. ^c Based on powder data taken from Kelmers.¹⁶

Measurement of Diffraction Data.—The initial unit cells were determined from Buerger precession patterns. Diffraction intensities were measured by visual estimate from multiple-film Weissenberg patterns made with Cu K α and Mo K α radiation for KV $_3O_8$, giving 114 independent hol data, 68 hk0 data, and 54 0kl data. The much better quality of the CsV $_8O_8$ crystals allowed the measurement of a complete set of three-dimensional data for this crystal, using hnl levels of multiple-film Weissenberg photographs made with Mo K α radiation, for n = 0-11, inclusive. Thus, 1278 independent data were obtained, representing all reflections for which (sin θ)/ $\lambda < 0.7$, of which 723

⁽¹¹⁾ H. T. Evans, Jr., A. R. Swallow, and W. H. Barnes, J. Am. Chem. Soc., 86, 4209 (1964).

⁽¹²⁾ A. M. Byström and H. T. Evans, Jr., Acta Chem. Scand., 13, 377 (1959).

⁽¹³⁾ H. T. Evans, Jr., U. S. Geological Survey, Professional Paper 320, U. S. Government Printing Office, Washington, D. C., 1959, p 91.

⁽¹⁴⁾ J. A. Norblad, Bull. Soc. Chim. France, [2] 23, 64 (1875).

⁽¹⁷⁾ A. D. Kelmers, *ibid.*, 23, 279 (1961).

⁽¹⁸⁾ F. Holzberg, A. Reisman, M. Berry, and M. Berhenbilt, J. Am. Chem.
Soc., 78, 1536 (1956).
(19) V. V. Illavionov, R. P. Ozerov, and E. B. Kil'disheva, Zh. Neorgan.

<sup>Khim., 1, 777 (1956).
(20) H. Flood, Th. Krog, and H. Sørum, Tidsskr. Kjemi, Bergvesen Met.,
6, 32 (1946).</sup>

⁽²¹⁾ A. D. Wadsley, Acta Cryst., 10, 261 (1957).

	KV3C€	Ct	sVaCe	I	XV30a		0sV₃C8	1	ĸy	sCa	CoV	3°8		кv _е	0e	Cs'	/3°6	1	κv	்க	Ċs'	Vo@s
hk.!	F(obs) F(ca	l) F(obs)) F(cal)	hk:i	F(obs) F(bal) F(oh	s) F(cal)	hki	F(obs)	F(cal)	F(obs)	F(cal)	nk?	P(obs)	F(cal)	P(obs)	F(cal)	hk.	₹(cbs)	F(cal)	F(obs)	F(cal)
300000000000000000 100000000000000000 1000000	559 -26 27 24 25 32 29 32 29 -36 29 24 29 32 29 -37 6 11 -20 20 20 20 20 20 20 20 20 20 20 20 20 2	11.6 28.5 28.7 24.1 36.8 25.7 75.5 14.0 50.1 55.0 36.1 35.0	- 56.2 55.0 - 66.2 - 76.2 - 76.2 - 75.0 - 75	07000000000000000000000000000000000000	22 - 57 15 69 27 47 22	.5 15. 4 19. 5 4 6 22. 5 39. 6 17. 5 122. 6 17. 6 12. 7 3. 6 17. 7 17. 7 17.	5 13.5 7 22.9 -2.1 -2.9 -2.1 -2.9 -2.1 -2.9 -2.1 -2.9 -2.7 -1.0 -2.7 -1.0 -2.7 -1.0 -1	6666777777777777 667577777777777777 667577777777	56	-11	16.2 29.1 14.3 34.1 29.5 19.7 28.0 29.1 29.9	-16.6 -7.2 27.4 -3.1 -54.4 -20.0 -57.1 -28.0 -57.1 -28.0 -57.1 -28.0 -57.1	20000000000000000000000000000000000000	16 88 32 18	3 -97 -1 -9 16	20.2 33.3 111.9 20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	2.4 -23.2 -13.2 -8.8 -24.5 -24.5 -24.5 -24.5 -29.3 -24.5 -39.9 -15.5 -39.9 -15.5 -15	00000000000000000000000000000000000000	24 .4382 40	19100547250740	12.9 64.942159 13.604.75 13.604.75 13.604.75 13.604.75	
11111111111111111111111111111111111111	21 52 31 54 31 54 465 59 65 -65 66 28 -25	52.0 94.7 18.6 66.8 20.6 26.5 40.5 29.8	125.6 93.7 21.2 -75.2 -56.5 -21.3 -56.5 -26.5 -27.0	10000000000000000000000000000000000000	25 53 18 55 55	4 20 29. 56 37. 15 14. 16 14. 16 14. 12 45. 44 57. 22 17.3	-10.0 -5.5 -89.9 16.0 14.3 15.0 47.7 48.3 -24.1	23410000 78110000 781110000 781110000 711110000 711110000	32 16 25	-33 -18 11 23 -6 7	75.0 44.0 69.2 24.6 29.1 22.3 27.7	-110,7 -76.1 -56.3 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -15.2 -25.5	00000000000000000000000000000000000000	34 27	6 2 7 6 - 46 - 25 - 25	16.8 20.8 29.3 68.2 32.0 27.9	50.35.46.38.50.5 7112256.54.50.5	001-20000000000000000000000000000000000	24 87 82 38 32	-25 -25 -25 -25 -25 -25 -39 -39 -39 -22 -39 -22 -39 -25 -39 -25 -39 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25	59.6 26.5 245.4 15.3 76.4 5 26.5 25.5	00000000000000000000000000000000000000
	10 -6 80 79 55 60 -12 50 -57 58 -59 -7 -7 -6 -7 -6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	+1.7 125.5 12.9 52.6 28.0 102.9 23.8 28.2 35.6 30.0	45.1 116.8 -63.3 -63.8 -101.2 -222.7 -222.7 -222.7 -222.7 -225.5	00000000000000000000000000000000000000	47 53 92 40 -	26.5 47 36.1 51 82.4 6 24.4 6 42.5 5 14.5 5 14.5 5 14.5 18.0	99924469 9993556946045 -246946045 -246946045 -246946045 -269555	0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 83 23 16 52 57 18	137991195602	79.0 128.0 16.2 26.2 89.5 54.6 51.6	-557 -7-80 -15.2 -51.2 -15.2 -15.2 -15.2 -15.2 -15.2 -27.8	977-00000000000000000000000000000000000	34 19 27 27	-23-192-22	29%5.035 -9%5.95 26.92 200	-0.2 47-12 5-0.3 5-0.3 1-98 -10 -10 -10 -10 -10	00000000000000000000000000000000000000	53 22 33 59	50 23 22 28 59 14 -10 21	19.1 79.7 21.8 17.4 22.9	1766705187057
10100000000000000000000000000000000000	59 80 57 41 18 17 25 -18 28 22 6 61 -43 59 59 50 50 50 50 50 50 50 50 50 50 50 50 50	146.0 341.4 341.6 245.18 358.5 245.18 358.5 2 358.5 2 358.5 2 358.5 2 358.5 2 358.5 359.5	6040778 120778 121954447594 25549788	30000000000000000000000000000000000000	12 - 40 28 -	76.2 10.15.6 16.29.5 15.7 15.7 10.57.4 10.	4.220.94.20.56.5.50 4.220.94.20.56.5.50	11 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	48 29 34 74 18 25	47 -28 726 -76 -19 -18 -18	19.4 58.5 40.6 129.5 189.5 26.5 53.2 20.6	0.0 15.0 4.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51	00000000000000000000000000000000000000	62	-15 -16	26.4 20.3 11.5 42.0 25.7 63.3	-256.5.4.3.6.0.2.4.4. -256.2.5.4.3.6.0.2.4.4.	10000000000000000000000000000000000000	22 31 32 31 32 22 23	9 17 -45 -12 -12 -11 -16 20 3	27.3 35.5 64.4 40.4 27.2 24.1 26.1 26.1	0.2746078459
111-125-155-15-1-1-1-1-1-1-1-1-1-1-1-1-1	18 102 018 102 18 127 18 27 18 27 28 27 19 29 240 31 40 31	59.4 10.2 119.5 70.3 51.4 99.9 51.9 51.2 10.1 51.2 10.2	261382 97 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ាស់ដល់ទំនង់សំនង់សំនេះសំន ទំនងសំនង់សំនង់សំនង ទំនងសំនងសំនងសំនៃសំនៃសំនៃសំនៃសំនៃសំនៃសំនៃសំនៃសំនៃសំនៃ	28 51 - 36 - 36 40 - 35 80	10 71.2 12.2 12.2 12.2 15.4 15.	-01892.544550 -1892.54554	1010-1004000-0000 000-1-1-1-1-4-4-1-	53 21 19 10 27 29	55 16 16 15 128 28	103.8 52.8 78.1 3.2 15.9 42.0 15.7 50.4	555 -560 -570 -570 -570 -570 -570 -570 -500 -141 -500 -500 -141 -500 -500 -141 -500 	25:200000000000000000000000000000000000			26.5 30.7 15.2 25.0	-207 4 2 4 3 5 0 0 0 5 7 -207 4 2 4 3 5 0 0 0 5 7	00000000000000000000000000000000000000	28 -9	0 -20 30	51.7 25.3 35.8 41.2	-2.0 -31.8 27.8 -5.3 -5.3 -5.5 -20.5
193333333 190100000	-16 28 50 28 50 43 -51 62 72 4	66.0 48.6 129.5	65.0 54.6 127.6	4	- 57 : 13 - 25 :	0 33.3 20.5 8 21.0 6 60.2 5 1.5.7	0.0 50.5 18.6 -26.2 -56.2 -56.6	11100000000	52 71 25 15 27	47 -66 -30 17 -21	29.2 125.0 12.4 12.4 47.0 67.8	-91,1 -15,9 20,6 -98,5 -42,5 -42,5 -42,5 -55,9	00000000000000000000000000000000000000	22 100 10 30 26 33	-116 -145 -125 -125 -125 -125	38.0 35.0 67.7	1765.4 4 5 4 5 4 5 4					

Table II hk0, 0kl, and h0l Structure Factors for KV_8O_8 and $CsV_8O_8^{a}$

^a Asterisk indicates reflections not measured.

were measurable above background. The data were corrected for Lorentz and polarization effects and scaled by conventional methods, but no corrections were made for absorption and extinction.

Structure Determination and Refinement.—The potassium and vanadium atoms in KV_8O_8 were found from Patterson syntheses and the oxygen atoms uniquely placed by spatial considerations. The three projections were refined by full-matrix, least-squares analysis of the data for the three projections. The observed *F* values were given unit weights. Because of the limited amount of data, the thermal parameters were held fixed at $B = 2.0 \text{ A}^2$ for K, 0.7 A^2 for V, 1.0 A^2 for O_1 and O_2 , and 1.5 A^2 for O_8 , O_4 , and O_5 . The final conventional *R* factors (zero reflections excluded) were 0.14 for hk0, 0.15 for 0kl, and 0.16 for h0l.

The full-matrix, least-squares analysis of the three-dimensional data for CsV_3O_8 was started with parameters derived from the structure found for KV_3O_8 . The data were weighted according to $\sqrt{w} = 4F_{\min}/F_{\text{obsd}}$ for $F_{\text{obsd}} > 4F_{\min}$ and $\sqrt{w} = F_{\text{obsd}}/4F_{\min}$ for $F_{\text{obsd}} < 4F_{\min}$, where F_{\min} was set at 10.0 electrons. The isotropic thermal parameters were allowed to vary for each type of atom separately. The total number of parameters was 40 (20 structure parameters, 8 thermal parameters, 12 scale parameters). The final *R* factor excluding nonobserved reflections was 0.089, and the standard error of the observations *F* with weight unity was 2.8.

An attempt to refine CsV₃O₈ in the space group P2₁ failed because of the instability of the least-squares matrix, even though the atoms were artificially displaced from the mirror planes. A three-dimensional Fourier synthesis with ΔF values as amplitudes showed no evidence of displacement of any atoms from the mirror planes as would be expected if the structure were noncentrosymmetric. Therefore, there is no reason at present to believe that the structures of KV₃O₈ and CsV₃O₈ are not truly centrosymmetric.

Calculated and observed F values are listed for hk0, h0l, and

0kl for both crystals in Table II, and the complete hkl data for CsV₃O₈ are given in Table III. The final structure parameters for both KV₃O₈ and CsV₃O₈ are given in Table IV.

Description of the Crystals and the Crystal Structures

 KV_3O_8 and CsV_3O_8 (and probably also $NH_4V_3O_8$ and RbV_3O_8) have the monoclinic space group $P2_1/m$ $(C_{2h}{}^5$, no. 11). Their unit cell parameters and other data are collected in Table I. Both KV_3O_8 and CsV_3O_8 form lathlike plates flattened on (100), but they are elongated along *c* for KV_3O_8 and along *b* for CsV_3O_8 (Figure 1). The habit of $NH_4V_3O_8$ is similar to that of KV_3O_8 . The difference in crystal habit between KV_3O_8 and CsV_3O_8 is striking and unexplained. The former forms rosettes of tiny crystal plates making it difficult to obtain good specimens large enough for X-ray diffraction study, but the columnar habit and good quality of the crystals of CsV_3O_8 make them far better suited for this purpose.

Optical data were measured for KV₃O₈ as follows: $n_{\alpha} 1.77 \pm 5$ (lemon-yellow, nearly $\perp (100)$), $n_{\beta} = 2.27 \pm 5$ (orange, $||b\rangle$, $n_{\gamma} 2.34 \pm 5$ (orange), $2V = 26 \pm 3^{\circ}$. The orientation of the strongly negative biaxial optical indicatrix is consistent with the layer structure found in the crystal structure analysis.

The structure is a clear-cut layer type as previously reported by Block,⁶ consistent with the perfect (100) cleavage and large negative birefringence observed for these crystals. The layers consist of highly distorted VO_6 octahedra linked together by sharing corners and edges. The sheet as a whole has a corrugated appear-

CRYSTAL STRUCTURES OF POTASSIUM AND CESIUM TRIVANADATES 1811

TABLE III

 hkl Structure Factors for $\mathrm{CsV_{8}O_{8}{}^{a}}$

нк	L F-OPS F-CAL H K	L FHORS FHCAL	H K L F-OBS F-C	AL H X	L F-OBS F-CAL	нк	L F-OBS F-CAL	^{++ K}	1 F-035 F-C4L	^{н к}	L F-OBS F-CAL	Ч ^{н к}	L F-035	7-C4L
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L F-065 F-CAL 7 72.2 -25.5 7 72.0 -12.5 7 72.0 -12.5 7 72.0 -12.5 1 2 -25.5 9 -12.5 9 -12	$\begin{array}{c} H & K & L & F = 0.05 & $		$ \begin{array}{c} 0 & 0.33 & 0.35 & 0.431 & 0.35 & 0.431 & 0.35 & 0.431 & 0.35 & 0.431 & 0.35 & 0.431 & 0.35 &$		$ \begin{array}{c} \begin{tabular}{ c c c c } $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $$		$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		$ \begin{bmatrix} P - 016 \\ P$		L F-035 F-035 26.0 27.5 26.0 27.5 27.5 26.0 27.5 27.5 26.0 27.5 27	

^a Asterisk indicates reflections not measured. For hol reflections, see Table II.

ance as shown in Figure 2. The cations occupy positions between the layers, in irregular 12-fold coordination with neighboring oxygen atoms. As shown in Table V, in KV_3O_8 the K–O distances vary from 2.70 to 3.55 A (average 3.11 A), and in CsV₃O₈ the Cs–O distances vary from 2.99 to 3.68 A (average 3.30 A). The marked increase in the average cation-oxygen

distances in going from KV_3O_8 to CsV_3O_8 corresponds to the increase in the crystallographic *a* axis, as pointed out by Kelmers.¹⁶ It is also apparent from Kelmers' observation¹⁶ that sodium and lithium analogs cannot be prepared that the special layer structure found for the trivanadates probably requires the presence of relatively large interlayer cations to be stable.

Inorganic Chemistry

	Tai	BLE IV			
CRYSTAL STRUC	ture Param	ETERS FO	r KV30	D_8 and CsV	${}_{3}O_{8}{}^{a}$
		<i>_</i> −−KV₃O	8	CsV8	⊃s——
Atom	Parameter	Value	σ	Value	σ
	(x	0.061	3	0.0553	2
K, Cs in $2(e)$	{z	0.0951	6	0.9401	4
	(B	2.0		1.88	4
	$\int x$	0.578	2	0.5674	5
V_1 in $2(e)$	12	0.918	4	0.9105	8
	B	0.7		0.57	6
	(x	0.693	1	0.6760	3
TT 1. ((f)	y y	0.055	2	0.0573	4
$V_2 \text{in} 4(1)$	z	0.441	2	0.4311	5
	B	0.7		0.61	5
	x	0.432	9	0.4229	24
O_1 in $2(e)$	{z	0.118	15	0,1124	39
	B	1.0		1.86	34
	x	0.758	8	0.7412	21
O_2 in $2(e)$	$\langle z$	0.609	13	0.5788	32
	B	1.0		1.05	24
	x	0.514	5	0.5029	14
$O = \frac{1}{2} A(f)$) y	0.098	$\overline{7}$	0.0841	1 6
$O_3 m 4(1)$	z	0.691	8	0.6807	22
	B	1.5		1.26	19
	(x	0.156	$\overline{5}$	0.1834	17
\mathbf{O} in $\mathbf{I}(\mathbf{f})$	y y	0.062	8	0.0560	19
$O_4 III 4(1)$) z	0.437	8	0.4474	27
	(B	1.5	• • •	1.97	25
	(x	0.744	õ	0.7188	14
$O_{in} \Lambda(f)$) y	0.091	7	0.1048	16
$O_5 \text{III} \pm (1)$	ໄຊ	0.133	8	0.1074	23
	B	1.5		1.18	18
- · ·	· .				-

 a Standard errors σ are given in terms of last significant figures. Thermal parameters $B~({\rm A^2})$ for ${\rm KV_3O_8}$ were held fixed in least-squares analysis.

Figure 1.—Crystal habits of (a) KV_3O_8 and (b) CsV_3O_8 . Crystal forms shown are: a(100), b(010), c(001), m(110), d(011), $(e\overline{1}11)$.

Figure 2.—View normal to (100) of the layer structure of CsV₃O₈, shown as linkages of distorted VO₆ octahedra: black circles, V atoms; large circles, Cs⁺ ions; rectangle shows trace of the unit cell at x = 1/2.

Interatomi	C DISTANCES .	and Angi	es in K	V_8O_8 and C	$sV_3O_8^a$
Atoms	Vectors	$\mathrm{KV}_{8}\mathrm{O}_{8}$	σ	CsV3O8	σ
Vanadium-oxyg	en coordination	1 70	Lengt	hs, A———-	
$V_1 = O_1$ $V_2 = O_2$	A B(2)	1.08	8	1.624	20
$V_1 = O_2$	D(2) C	2.18	7	2 282	16
V ₁ –O ₅	D(2)	2.05	5	1.945	13
$V_2 - O_4$	Е	1.58	5	1.575	15
$V_2 - O_1$	F	2.91	6	2.973	17
$V_2 - O_2$	G	1.88	3	1.855	8
$V_2 - O_3$	H	1.99	4	1,986	11
V ₂ -O ₃	R. J	2.08	3 4	1.933	12
V2 O6	IX.	1.00	Angle	1.701 es deg	
$O_1 - V_1 - O_3$	$A \wedge B$	104	3	101.6	8
$O_1 - V_1 - O_{\delta}$	$A \wedge D$	96	3	98.8	8
$O_2 - V_1 - O_3$	$B \wedge C$	72	2	73.4	5
O_2 - V_1 - O_5	$C \land D$	88	2	87.4	6
O_3 - V_1 - O_5	$B \land D$	88	3	87.4	7
O_3 - V_1 - O_3 ^m	$\mathbf{B} \wedge \mathbf{B}^{\mathbf{m}}$	95	3	98.7	7
$O_{\delta}-V_{1}-O_{\delta}^{m}$	$D \wedge D^m$	81	3	78.9	7
$O_1 - V_1 - O_2$	A \ C	174	5	171.9	12
$O_3 - V_1 - O_5 $	$B \wedge D^m$	108	3	156.9	7
$O_4 - V_2 - O_2$	EAU	103	ა ი	102.0	6
$O_4 - V_2 - O_3$ $O_4 - V_2 - O_3'$	EAI	103	2	103 4	7
$O_4 V_2 O_3$ $O_4 - V_2 - O_3$	EAK	103	3	100.4 107 1	8
$O_1 - V_2 - O_2$	F∧G	83	1	83.1	4
$O_1 - V_2 - O_3$	$F \wedge H$	76	$\overline{2}$	76.7	5
$O_1 - V_2 - O_3'$	F∧J	74	1	73.9	4
$O_1 - V_2 - O_5$	$\mathbf{F} \wedge \mathbf{K}$	67	2	64.4	5
O_2 - V_2 - O_3	$G \wedge H$	74	3	81.0	7
$O_3 - V_2 - O_3'$	$\mathbf{H} \wedge \mathbf{J}$	76	2	71.8	6
$O_3' - V_2 - O_5$	$J \wedge K$	94	2	95.4	7
$O_2 - V_2 - O_5$	G^K	100	3	94.9	6
$O_4 - V_2 - O_1$	EAF	169	2	170.4	6
$O_2 - V_2 - O_3$	GAJ	140	2	147.6	5
O ₃ -V ₂ -O ₅		143	3 	141.0	8
Oxygen-oxygen	distances (<3.20	0 A)	Le	ngtns, A	 01
$0_1 = 0_3$		2.02 2.73	0	2.700	21 91
$O_1 O_3$		2.10	7	2.717	18
$O_{2} = O_{3}$		2.94	8	2.930	19
O ₃ O ₅		2.64	5	2.631	16
$O_3-O_3^m$		2.56	12	2,825	27
$O_{\delta} - O_{\delta}^m$		2.68	11	2.472	26
O_4-O_2		2.72	7	2.683	17
$O_4 - O_3$		2.99	6	2.953	18
$O_4 - O_3'$		2.88	5	2.761	18
$O_4 - O_5$		2.53	7	2.661	18
$0_{3}-0_{3}$		2.50	10	2.297	24 17
$O_3 - O_5$		2.70	8	2.713	17 91
$O_1' - O_3'$		3 09	6	3 065	15
$O_1 - O_4''$		3.21	8	3.160	22
Cation-oxygen d	listances (M =	K or Cs)		0.111	
$M-O_1$	L	2.85	7	3.042	20
$M-O_2''$	М	2.70	6	2.985	18
M-O4''	N(2)	3.16	6	3.217	15
$M-O_4'$	O(2)	2.91	6	3.112	15
$M-O_1^{\prime\prime\prime}$	P(2)	3.55	6	3.684	1 6
M-O ⁵	Q(2)	3.28	6	3.560	13
$M-O_5''$	R(2)	3.00	5	3.199	12
Vanadium-vana	dium distances				
$V_1 - V_2$		3.10	2	3.098	4
$V_1 - V_2'$		3.62	2	3.695	4
$v_2 = v_2$		3.21	2 +11	5,175	4
~ standard	$errors(\sigma)$ 111	ierms of	rne last	significant	ngures.

TABLE V

Superscript m indicates mirror-equivalent atom or vector (see Figure 4).

The Vanadium Coordination

In these structures, both kinds of vanadium atoms are in square-pyramidal coordination with oxygen, with a sixth oxygen weakly coordinated through the base of the pyramid. This coordination is similar to that found in several other oxovanadate compounds with an O:V ratio <3, for example, LiV₃O₈,²¹ V₂O₅,²² $Na_{3}V_{6}O_{15},^{23} AgV_{2}O_{5},^{24} K_{3}V_{5}O_{14},^{10} K_{2}Zn_{2}V_{10}O_{28}\cdot 16H_{2}O,^{9,\,25}$ VO(OH)2,26 VO(acac)2,27,28 and VO(bzac)2.28,29 Bachmann and Barnes³⁰ have given a comprehensive summary of available information concerning coordination and bond lengths in oxovanadium(V) compounds. They refer to all of the fivefold coordination configurations in these compounds as trigonal bipyramids. There is only a slight difference between the angular conformations of a trigonal bipyramid and a square pyramid. Nevertheless, in these structures we find that one vanadium-oxygen distance (bond type A) is always considerably shorter than the other four (bond type B) among the five ligands and that the latter four ligands usually lie very nearly in a plane perpendicular to the short V-O bond. This configuration is illustrated in Figure 3a, and the associated bond lengths are listed in Table VI for all well-refined structures containing this type of coordination. The only compounds in which the vanadium coordination approaches a true trigonal-bipyramid configuration are the closely related KVO_3 · H_2O ,³¹ $Ca(VO_3)_2$ · $2H_2O$,³² and $Ca(VO_3)_2$ · 4H₂O.³³ In the square-pyramid structures, the short V-O bond is so outstanding that Hanic³⁴ has suggested that the diatomic group should be regarded as a discrete VO³⁺ ion. Evans²⁶ has suggested that this bond is practically a pure double bond and that the four basal ligands each represent a three-quarters bond for vanadium(V) or one-half bond for vanadium(IV).

In KV₃O₈ and CsV₃O₈ (the structure of the latter is taken as the standard) the two kinds of vanadium both conform to a square pyramid but have rather different dimensions and surroundings. The V₂ atoms are in double pyramidal groups V₂O₈, in which the pyramids are joined by an edge with apices directed opposite to each other. These double groups are joined into zigzag chains along the *b* axis by sharing corners through O₂, and these chains are linked into sheets by VO groups represented by V₁ and O₁. The V₁-O₁ distance is somewhat shorter than the apical VO distance V₂-O₄, while the opposite V-O distances (C, F, Figure 4) through the pyramidal base are correspondingly longer and shorter.

(22) H. G. Bachmann, F. R. Ahmed, and W. H. Barnes, Z. Krist., 115, 110 (1961).

- (23) A. D. Wadsley, Acta Cryst., 8, 695 (1955).
- (24) S. Anderson, Acta Chem. Scand., 19, 1371 (1965).
- (25) H. T. Evans, Jr., Inorg. Chem., 5, 967 (1966).
- (26) H. T. Evans, Jr., and M. E. Mrose, Acta Cryst., 11, 56 (1958).
- (27) R. P. Dodge, D. H. Templeton, and A. Zalkin, J. Chem. Phys., 35, 1961) (acac = acetylacetonate).
- (28) P. K. Hon, R. L. Belford, and C. E. Pfluger, *ibid.*, **43**, 3111 (1965).
 (29) P. K. Hon, R. L. Belford, and C. E. Pfluger, *ibid.*, **43**, 1323 (1965)
 [bzac = bis(2-phenyl-1,3-butanedionate)].
- (30) H. G. Bachmann and W. H. Barnes, Z. Krist., 115, 215 (1961).
- (31) C. L. Christ, J. R. Clark, and H. T. Evans, Jr., Acta Cryst., 7, 801
- (1954); H. T. Evans, Jr., Z. Krist., 114, 257 (1960).
 (32) C. H. Kelsey and W. H. Barnes, Can. Mineralogist, 6, 448 (1960).
- (32) C. H. Kelsey and W. H. Barnes, Can. Minerologist, 6, 448 (190)
 (33) F. R. Ahmed and W. H. Barnes, *ibid.*, 7, 713 (1963).
- (34) F. Hanic, Chem. Zvesti, 12, 579 (1958).

Figure 3—Vanadium-oxygen coordination configurations: (a) square-pyramid coordination found in many oxovanadates, as listed in Table VI; (b) double V_2O_8 group found in CsV_3O_8 and $Cs_2(UO_2)_2V_2O_8$.

Figure 4.—Projection of the structure of CsV_3O_3 along the *b* axis. Numerals are serial numbers of atoms as given in Table IV; letters represent interatomic vectors as given in Table V. V_1O_1 groups and Cs^+ ions on the mirror plane at $y = \sqrt[2]{4}$ have been omitted to avoid confusion.

Table VI

Bond Lengths (A) in	SQUARE-PYRAMII	VO5 GROUPS IN
VARIOUS OXO COMPOUNDS	OF VANADIUM(IV) and Vanadium(V)

Compd	Ref	A	В	С	σ (estd)
CsV ₃ O ₈		1.624	1,861-1,945	2.282	0.005
		1.575	1.731-1.986	2.973	0,005
KV3O8		1.58	1.73 - 2.05	2.18	0.05
		1.58	1.65 - 2.08	2.91	0.05
V_2O_5	18	1.585	1.780-2.021	2.785	0,004
LiV_3O_8	19	1.60	1.78 - 2.06	2.86	0.03
		1.64	1.72-2.10	2.36	0.03
		1.59	1.88-1.99	2.26	0.03
$Na_3V_6O_{15}$	20	1.56	1.89 - 2.01	2.32	0.03
		1.58	1.80 - 2.16	2.34	0.03
		1.56	1.78 - 2.00	2.68	0.03
${ m AgV_2O_5}$	21	1.49	1.85 - 1.95	2.43	0.04
		1.54	1.78 - 2.09	2.35	0.04
$\mathrm{K}_{8}\mathrm{V}_{5}\mathrm{O}_{14}$	10	1.60	1.85 - 1.97		0.02
V10O286-	9,22	1.60	1.84 - 2.05	2.33	0.02
		1.61	1.83 - 1.98	2.23	0.02
$VO(OH)_2$	23	1.65	2.02	2.30	0.02
$VO(acac)_2$	24, 25	1.57	1.96 - 1.98		0.01
VO(bzac) ₂	25, 26	1.612	1.946-1.986	• • •	0.08
Averages		1.60	1.91	(2.47)	

This confirms Evans' suggestion³⁵ that the strong apical bond is weakened somewhat if a sixth oxygen ligand approaches more closely at the base; however, there appears to be little basis, as yet, on which to dis-

(35) H. T. Evans, Jr., Acta Cryst., 13, 1019 (1960).

cuss such minor bond-length variations.²⁸ The V_2O_8 group in CsV₃O₈ is only slightly distorted from the ideal form shown in Figure 3b. If a plane is passed through the outer oxygen atoms numbered 2, 5', 5'', and 2' (Figure 4), the central oxygen atoms 3 and 3' are displaced from the plane 0.15 A. The V₂ atoms lie 0.52 A from this plane, and the bonds V₂–O₄ make an angle of 87.5° with the plane.

The double V_2O_8 group illustrated in Figure 3b now appears to be a characteristic feature of many oxovanadium(V) structures. It can be clearly discerned in LiV₃O₈,²¹ V₂O₅,²² and Na₃V₆O₁₅.²³ Its discrete character is strikingly emphasized by its appearance in isolated form (but linked through UO₂²⁺ groups into a sheet structure) in the crystal structure of the carnotite analog Cs₂(UO₂)V₂O₈.³⁶ A binucleate ion HV₂O₇³⁻ has been identified by Ingri and Brito^{8,9} in alkaline vanadate solutions. This ion may be formulated $H_3V_2O_8^{3-}$, but of course it is not possible at this time to say whether it corresponds to the V_2O_8 group in the solid compounds. The V₂O₈ group is wholly lacking in the $V_{10}O_{28}^{6-}$ ion.²⁵ It is possible that the slow formation of KV₃O₈ from solutions of V₁₀O₂₈⁶⁻ may be a result of some complex intermediate reactions in which the creation of the V_2O_8 group is involved.

A final detail worth noting is the close approach of (36) D. E. Appleman and H. T. Evans, Jr., Am. Mineralogist, **50**, 825 (1965).

the bridging oxygen atoms in the V_2O_8 group, namely, 2.30 ± 0.02 A in CsV₃O₈. This is fairly consistent with the distance of 2.35 ± 0.05 A found for the corresponding pair of atoms in $Cs_2(UO_2)V_2O_8$, ³⁶ 2.42 ± 0.04 A found in LiV_3O_8,^{21} 2.388 \pm 0.003 A in V_2O_5,^{22} and 2.43 ± 0.05 A in Na₃V₆O₁₅.²³ A pair of bridging oxygen atoms between two highly charged cations is frequently drawn quite close together. Between octahedrally coordinated aluminum in aluminosilicates, for example, this distance often lies between 2.4 and 2.5 A. The distances found in the V_2O_8 groups seem to be unusually short. Nevertheless, the shortest distance of this type that has been reported so far was found by Burnham and Buerger³⁷ in andalusite (Al₂SiO₅) for a pair of oxygen atoms bridging two aluminum atoms in fivefold coordination, namely, 2.247 ± 0.007 A.

Acknowledgments.—The authors are indebted to Professor J. D. H. Donnay of The Johns Hopkins University for his encouragement and advice, to P. B. Barton, Jr., of the Geological Survey for synthesis of CsV_8O_8 crystals, to D. E. Appleman of the Geological Survey for assistance with the crystal structure computations for KV_3O_8 , and to Professor L. G. Sillén of the Royal Institute of Technology in Stockholm for providing facilities for preparing Hägg–Guinier powder patterns.

(37) C. W. Burnham and M. J. Buerger, Z. Krist., 115, 269 (1961).

Notes

Contribution No. 341 from the Department of Chemistry, Tufts University, Medford, Massachusetts 02155

Preliminary Crystallographic Studies on the Systems Calcium–Lanthanum–Hydrogen and Calcium–Yttrium–Hydrogen

By Charles E. Messer, Roy M. Miller, $^{\rm 1}$ and James R. Barrante

Received January 17, 1966

Solid solutions of yttrium trifluoride in calcium fluoride have been known since 1914^2 and have recently been definitely characterized by Short and Roy.³ Up to 55 mole % YF₃ enters the fluorite lattice, the extra F⁻ of YF₃ entering the octahedral holes of CaF₂ until these are filled at a nominal 50%. The crystallographic analogy of hydride ion in saline hydrides to fluoride ion suggested the investigation of corresponding calcium-rare earth-hydrogen systems. Lanthanum and yttrium were chosen for first investigation by virtue of differing ionic size; the Zachariasen⁴ ionic radii are: Ca²⁺, 0.94 A; La³⁺, 1.04 A; Y³⁺, 0.88 A. CaH₂ is orthorhombic;⁵ lanthanum forms an fcc fluorite phase from (approximately) LaH₂ through LaH₃,⁶ VH₂ is fcc fluorite and VH₃ is hexagonal.⁷ All of these are nonstoichiometric to some extent.

Experimental Section

The calcium metal was obtained from Dominion Magnesium, Ltd., Toronto, Canada, 99.9%. Lanthanum was obtained from Cerium Metals Division of Ronson Metals, Inc., Newark, N. J., 99+%. Yttrium was obtained from United Mineral and Chemical Co., New York, N. Y., 99+%.

The metals were weighed out into molybdenum boats in an argon glove box and allowed to react with catalytically purified hydrogen at elevated temperatures. The amount of hydrogen taken up was determined by P-V-T measurements. Each sample was ground to powder in an agate mortar in the argon drybox, and a sample was withdrawn for X-ray powder crystallography. The bulk of the sample was returned to the hydrogen reaction system, where it was further exposed to measured hy-

⁽¹⁾ National Science Foundation Summer Research Participation Fellow, 1964.

⁽²⁾ T. Vogt, Neues Jahrb. Mineral., 7, 9 (1914).

⁽³⁾ J. Short and R. Roy, J. Phys. Chem., 67, 1860 (1963).

⁽⁴⁾ W. T. Zachariasen in "The Actinide Elements," G. T. Seaborg and J. J. Katz, Ed., McGraw-Hill Book Co., Inc., New York, N. Y., 1954, Chapter 18.

⁽⁵⁾ E. Zintl and A. Harder, Z. Elektrochem., 41, 33 (1935).
(6) C. E. Holley, Jr., R. N. R. Mulford, F. H. Ellinger, W. C. Koehler,

<sup>and W. H. Zachariasen, J. Phys. Chem., 59, 1226 (1955).
(7) C. E. Lundin and J. P. Blackledge, J. Electrochem. Soc., 109, 838 (1962).</sup>